Symmetric Graphs with Respect to Graph Entropy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Graphs with Respect to Graph Entropy

Let FG(P ) be a functional defined on the set of all the probability distributions on the vertex set of a graph G. We say that G is symmetric with respect to FG(P ) if the uniform distribution on V (G) maximizes FG(P ). Using the combinatorial definition of the entropy of a graph in terms of its vertex packing polytope and the relationship between the graph entropy and fractional chromatic numb...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Line graphs associated to the maximal graph

Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...

متن کامل

A Lower Bound on the Relative Entropy with Respect to a Symmetric Probability

Let ρ and μ be two probability measures on R which are not the Dirac mass at 0. We denote by H(μ|ρ) the relative entropy of μ with respect to ρ. We prove that, if ρ is symmetric and μ has a finite first moment, then

متن کامل

Using Graph and Vertex Entropy to Measure Similarity of Empirical Graphs with Theoretical Graph Models

Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: Erdős-Renyi random graph model, Watts-Strogatz small world model, Albert-Barabási preferential attachment model, Price citation model, and many more. Often, researchers working on an empirical graph want to know, which of the theoretical graph generation models is the closest, i.e., whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2017

ISSN: 1077-8926

DOI: 10.37236/5642